
TUNGSTEN CARBIDE BURRS BLANKS

Blank	A		B	В		
Dealgnation	Nominal	Actual	Nominal	Actual		
BSA-61	1/4	0.265	3/16	0.193		
BSA-51	1/4	0.265	1/2	0.500		
BSA-2	5/16	0.327	3/4	0.750		
BSA-3	3/8	0.390	3/4	0.750		
BSA-4	7/16	0.453	1	1.000		
BSA-5	1/2	0.515	1	1.000		
BSA-6	5/8	0.640	1	1.000		
BSA-16	3/4	0.767	1/2	0.500		
BSA-72	3/4	0.767	3/4	0.750		
BSA-7	3/4	0.767	1	1.000		
BSA-8	7/8	0.892	1	1.000		
BSA-9	1	1.019	1	1.000		

Table 2

A B Blank Dealgnation R Nominal Actual Nominal Actual B90.51 414 0 285 4/2 1 0.500 0 199 Ŀ ÷

Blanks for carbide burrs-shape SC (Cylindrical ball nose)

	-		
	1	()
phenoial	et	C	

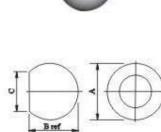
BSC-51	1/4	0.265	1/2	0.500	0.133
BSC-2	5/16	0.327	3/4	0.750	0.164
BSC-3	3/8	0.390	3/4	0.750	0.195
BSC-4	7/16	0.453	1	1.000	0.227
BSC-5	1/2	0.515	1	1.000	0.258
BSC-6	5/8	0.640	1	1.000	0.320
BSC-15	3/4	0.767	1/2	0.500	0.384
BSC-16	3/4	0.767	3/4	0.750	0.384
BSC-7	3/4	0.767	1	1.000	0.384
BSC-9	1	1.019	1	1.000	0.510
	BSC-2 BSC-3 BSC-4 BSC-5 BSC-6 BSC-15 BSC-16 BSC-7	BSC-2 5/16 BSC-3 3/8 BSC-4 7/16 BSC-5 1/2 BSC-6 5/8 BSC-15 3/4 BSC-7 3/4	BSC-2 5/16 0.327 BSC-3 3/8 0.390 BSC-4 7/16 0.453 BSC-5 1/2 0.515 BSC-6 5/8 0.640 BSC-15 3/4 0.767 BSC-16 3/4 0.767 BSC-7 3/4 0.767	BSC-2 5/16 0.327 3/4 BSC-3 3/8 0.390 3/4 BSC-4 7/16 0.453 1 BSC-5 1/2 0.515 1 BSC-6 5/8 0.640 1 BSC-15 3/4 0.767 1/2 BSC-16 3/4 0.767 3/4	BSC-2 5/16 0.327 3/4 0.750 BSC-3 3/8 0.390 3/4 0.750 BSC-4 7/16 0.453 1 1.000 BSC-5 1/2 0.515 1 1.000 BSC-6 5/8 0.640 1 1.000 BSC-15 3/4 0.767 1/2 0.500 BSC-16 3/4 0.767 3/4 0.750 BSC-7 3/4 0.767 1 1.000

Table 3

Blanks for carbide burrs-shape SD (Ball)

Blank	A	۱.	в	с	
Dealgnation	Nominal	Actual	В	U U	
BSD-51	1/4	0.265	0.220	0.188	
BSD-2	5/16	0.327	0.276	0.226	
BSD-3	3/8	0.390	0.332	0.265	
BSD-4	7/16	0.453	0.392	0.297	
BSD-5	1/2	0.515	0.450	0.329	
BSD-6	5/8	0.640	0.568	0.390	
BSD-7	3/4	0.767	0.686	0.456	
BSD-9	1	1.019	0.924	0.578	

Table 4


Blanks for carbide burrs-shape SE (Olive)

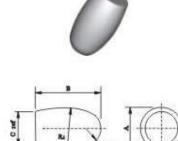
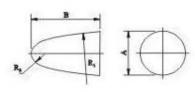
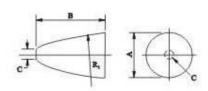

Blank	A		E	c	R1	Ra	
Dealgnation	Nominal	Actual	Nominal	Actual	L.	KI	ra
BSE-51	1/4	0.265	3/8	0.375	0.216	0.427	0.099
BSE-3	3/8	0.390	5/8	0.625	0.311	0.880	0.161
BSE-5	1/2	0.515	7/8	0.875	0.406	1.255	0.208
BSE-6	5/8	0.640	1	1.000	0.507	1.255	0.255
BSE-7	3/4	0.767	1	1.000	0.495	0.802	0.318

Table 5

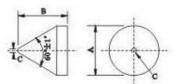

Blanks for carbide burrs-shape SF (Tree, Radius nose)

Blank	A		B			
Dealgnation	Nominal	Actual	Nominal	Actual	Rı	R2
BSF-51	1/4	0.265	1/2	0.50	1.630	0.068
BSF-3	3/8	0.390	3/4	0.750	2.300	0.098
BSF-4	7/16	0.453	1	1.000	3.255	0.098
BSF-13	1/2	0.515	3/4	0.750	1.760	0.130
BSF-5	1/2	0.515	1	1.000	3.255	0.130
BSF-6	5/8	0.640	1	1.000	3.005	0.194
BSF-7	3/4	0.767	1	1.000	2.130	0.194
BSF-14	3/4	0.767	1 1/4	1.250	3.319	0.194
BSF-15	3/4	0.767	1 1/2	1.500	5.069	0.194



Blank	A		В	6	~		
Dealgnation	Nominal	Actual	Nominal	Actual	c	R	
BSG-51	1/4	0.265	1/2	0.500	0.042	1.005	
BSG-2	5/16	0.327	3/4	0.750	0.055	2.005	
BSG-3	3/8	0.390	3/4	0.750	0.056	1.505	
BSG-13	1/2	0.515	3/4	0.750	0.073	1.318	
BSG-5	1/2	0.515	1	1.000	0.073	2.255	
BSG-6	5/8	0.640	1	1.000	0.073	1.880	
BSG-7	3/4	0.767	1	1.000	0.075	1.631	
BSG-15	3/4	0.767	1 1/2	1.500	0.088	3.505	

Blanks for carbide burrs-shape SF (Tree, Radius nose)


Table 7

Blanks for carbide burrs-shape SH (Flame)

Table 6

Blank A	A		В		c	D		Ra	Ra
Dealgnation	Nominal	Actual	Nominal	Actual	U	U	Rı	12	ru)
BSH-2	5/16	0.327	3/4	0.750	0.257	0.489	1.068	0.068	•
BSH-5	1/2	0.515	1 1/4	1.250	0.431	0.854	2.005	0.099	•
BSH-6	5/8	0.640	1 7/16	1.438	0.495	0.880	2.255	0.099	0.775
BSH-7	3/4	0.767	1 5/8	1.625	0.548	1.002	1.881	0.162	

Table 10 Blanks for carbide burrs-shape SJ (60-degree cone)

A в Blank C Deaignation Nominal Actual Nominal Actual BSJ-3 0.390 0.438 0.032 3/8 7/16 BSJ-5 0.515 0.547 0.032 35/64 1/2 BSJ-6 0.640 11/16 0.688 0.063 5/8 BSJ-7 0.767 0.797 51/64 0.063 3/4 BSJ-9 1 1.019 0.969 0.125 31/32

Table 11

Blanks for carbide burrs-shape Stock (90-degree cone)

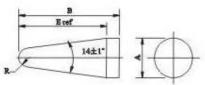
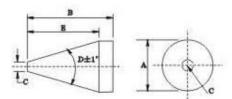

Blank	A		В	0		
Dealgnation	Nominal	Actual	Nominal	Actual	C	
BSK-3	3/8	0.390	5/16	0.313	0.032	
BSK-5	1/2	0.515	3/8	0.375	0.032	
BSK-6	5/8	0.640	31/64	0.484	0.063	
BSK-7	3/4	0.766	35/64	0.547	0.063	
BSK-9	1	1.019	41/64	0.641	0.125	

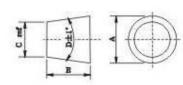
Table 9

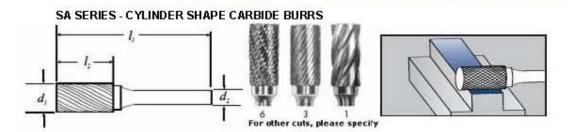

Blanks for carbide burrs-shape SL (14-degree cone, Ball nose)

Blank	A	é.	B		R	E	
Dealgnation	Nominal	Actual	Nominal	Actual	Nominal	Actual	Ref.
BSL-2	5/16	0.327	1	1.015	0.055	0.060	7/8
BSL-3	3/8	0.390	1 3/16	1.208	0.065	0.070	1/16
BSL-4	1/2	0.515	1 1/4	1.271	0.126	0.131	1/8
BSL-5	5/8	0.640	1 5/16	1.333	0.188	0.193	3/16
BSL-6	5/8	0.640	1 7/16	1.458	0.171	0.176	5/16
BSL-7	3/4	0.767	1 5/8	1.646	0.216	0.222	1/2

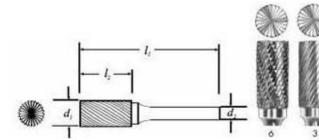
Table 6 Blanks for carbide burrs-shape SM (cone)

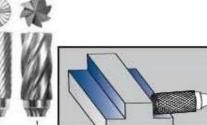
Blank	A	N	в			D	-
Dealgnation	Nominal	Actual	Nominal	Actual	С		E
BSM-51	1/4	0.265	5/8	0.635	0.065	22	0.514
BSM-4	3/8	0.390	1 3/4	0.760	0.073	28	0.636
BSM-5	1/2	0.515	1	1.010	0.073	28	0.886
BSM-6	5/8	0.640	1 1/8	1.141	0.080	31	1.010




12 Blanks for carbide burrs-shape SN (Inverted cone)

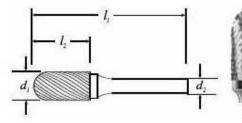
Blank	A		В	8	0	D
Dealgnation	Nominal	Actual	Nominal	Actual	c	Degrees
BSN-51	1/4	0.265	1/4	0.250	0.221	10
BSN-2	3/8	0.390	3/8	0.375	0.305	13
BSN-3	1/2	0.515	1/2	0.500	0.374	16
BSN-4	1/2	0.515	1/2	0.500	0.266	28
BSN-5	5/8	0.640	5/8	0.625	0.431	19
BSN-6	5/8	0.640	3/4	0.750	0.403	18
BSN-7	3/4	0.767	5/8	0.625	0.432	30




INDUSTRY ROTARY INSTRUMENTS

E xample	Type No.	D1	L2	D2	L1
	A0313	3	13	6(3)	38
	A0413	4	13	6(3)	41
	A0616	6	16	6	61
	A0820	8	20	6	65
	A1020	10	20	6	65
	A1225	12	25	6	70
N.	A1625	16	25	6	70
111	A0207	2.3	7	2.35	38
				-	

SB SERIES - CYLINDER SHAPE WITH END CUT CARBIDE BURRS



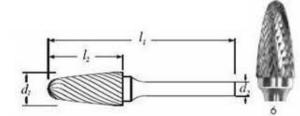

xample	Type No.	D1	L2	D2	L1
	B0210	2	10	6(3)	38
	B0313	3	13	6(3)	38
	B0413	4	13	6(3)	41
	B0616	6	16	6	61
	B0820	8	20	6	65
	B1020	10	20	6	65
M	B1225	12	25	6	70
	B1625	16	25	6	70
	B0207	2.3	7	2.35	38

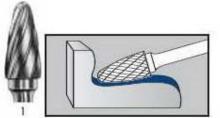
SC SERIES - CYLINDER SHAPE WITH RADIUS END CARBIDE BURRS

6

E xample	Type No.	D1	L2	D2	L1
12M	C0313	3	13	6(3)	38
(list)	C0413	4	13	6(3)	41
	C0616	6	16	6	61
	C0820	8	20	6	65
W MARKA	C1020	10	20	6	65
Contraction of the local division of the loc	C1225	12	25	6	70
1	C1625	16	25	6	70
	C0207	2.3	7	2.35	38
		~			
111					
	(a)				V

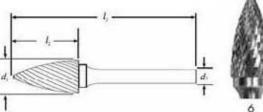
SD SERIES - BALL SHAPE CARBIDE BURRS

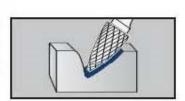

E xample	Type No.	D1	L2	D2	L1
	D0201	2	108	6(3)	38
dat	D0302	3	2.7	6(3)	38
Chill Alter	D0403	4	3.6	6(3)	31
	D0605	6	5.4	6	50
1 D	D0807	8	7.2	5	52
	D1009	10	9	6	54
	D1210	12	10.8	6	56
	D1614	16	14.4	6	60
	D0202	2.3	2	2.35	38


SE SERIES - OVAL SHAPE CARBIDE BURRS

E xample	Type No.	D1	L2	D2	L1
	E0307	3	7	6(3)	38
Man	E0610	6	10	6	55
CHINE .	E0813	8	13	6	58
	E1016	10	16	6	61
	E1220	12	20	6	65
	E1625	16	25	6	70
1		14			
	~				
181	2 2				
		0			

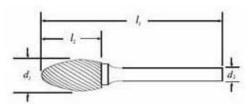
SF SERIES - TREE SHAPE WITH RADIUS END CARBIDE BURRS

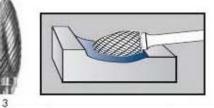



E xample	Type No.	D1	L2	D2	L1
T	F0313	3	13	6(3)	38
	F0618	6	18	6	63
	F1020	10	20	6	65
	F1225	12	25	6	70
O.LD					
		-			
19		14		8	

3

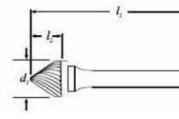
SG SERIES - TREE SHAPE CARBIDE BURRS

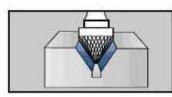




E xample	Type No.	D1	L2	D2	L1
	G 031 3	3	13	6(3)	38
	G0618	6	18	6	63
Billin .	G1020	10	20	6	65
	G1225	12	25	6	70
	G0207	2.3	7	2.35	38
-		1		·	

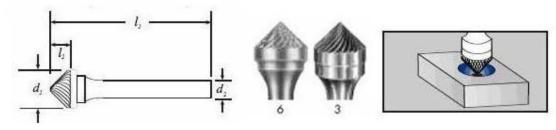
SH SERIES - FLAME SHAPE CARBIDE BURRS




E xample	Type No.	D1	L2	D2	L1
	H0307	3	7	6(3)	38
	H0618	6	18	6	63
	H0820	8	20	6	65
	H1025	10	25	6	70
	H1232	12	32	6	77
	H1636	16	36	6	81
11	1		~		
100	4) 0				

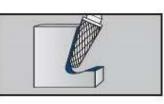
6

*d*₂ Ŧ



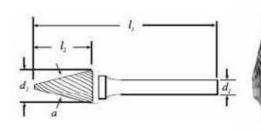

E xample	Type No.	D1	L2	D2	L1
Â	J0302(60")	3	2.6	6	38
	J0605(60")	6	5.2	6	55
	J0807(60°)	8	7	6	57
	J1008(60")	10	8.7	6	58
17	J1210(60°)	12	10.4	6	60
	J1613(60°)	16	13.8	6	62
			~		
					2

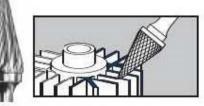
SK SERIES - 90 CONE SHAPE CARBIDE BURRS



E xample	Type No.	D1	L2	D2	L1
		2	4.6		
/// —	K0301(90°)	3	1.5	6	38
WIDE DE	K0603(90") K1005(90")	10	3	6	51 55
	K1206(90")	10	5	6	55
III	K1608(90")	12	8	6	60
	K0804(90")	8	4	6	54
113					
1.00			-		C

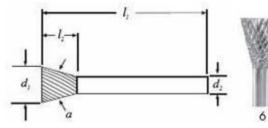
SL SERIES - TAPER WITH RADIUS END SHAPE CARBIDE BURRS





E xample	Type No.	D1	L2	D2	L1
15mil	L0313(10)	3	13	6(3)	38
Elm.	L0616(14")	6	16	6	61
	L0822(14")	8	22	6	67
	L1025(14")	10	25	6	70
	L1228(14")	12	28	6	73
	L1633(14")	16	33	6	78
W	L2013(11)	2	13	6(3)	38
	12 ~				
	<u>.</u>				

SM SERIES - CONE SHAPE CARBIDE BURRS



E xample	Type No.	D1	L2	D2	L1
			9		
63	M0311(14°)	3	11	6(3)	38
	M0618(14°)	6	18	6	63
ABA .	M1020(25°)	10	20	6	65
	M1225(25°)	12	25	6	70
	M1625(32°)	16	25	6	70
	M0207(14°)	2.3	7	2.35	38
Taget S					
	3				
	-		-		

SN SERIES - CONE INVERTED SHAPE CARBIDE BURRS

E xample	Type No.	D1	L2	D2	L1
	N0305(10°)	3	5	6(3)	38
	N0607(10°)	6	7	6(3)	52
	N0808(10°)	8	8	6	52
	N1010(13°)	10	10	6	55
	N1213(20°)	12	13	6	58
	N1616(20")	16	16	6	61
	N1613(20")	16	13	6	58
	N1619(18°)	16	19	6	59
	3				
)					